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Abstract-A boundary element formulation using augmented kernels. for planar time-dependent inelastic
deformation problems for bodies with cutouts, bas been presented in a companion paper{t}. The primary
advantage of tbis formulation is that the effect of the cutout is incorporated in the kernels and the cutout
boundary need not be modelled in a numerical solution procedure. In this paper. the specific kernels for
plates with elliptic cutouts lire first derived. These kernels are then used to obtain numerical solutions for
time-dependent stress fields near stationary crack tips in finite plates. Acrack is modelled as a very narrow
ellipse and both remote tensile (mode one) and remote shear (mode two) loadings are considered. The
deformation of the plate material is assumed to be described either by the equations of power law creep or
the combined creep·plasticity constitutive model of Hart.

INTRODUCTION
A boundary element formulation for planar time-dependent inelastic deformation of plates with
cutouts has been presented in a companion paper[1]. In that formUlation a stress function
description is used and a nonhomogeneous biharmonic equation for the rate of the stress
function is obtained. The nonhomogeneous term is due to the presence of nonelastic strains.
This differential equation is transformed into an integral equation for certain concentrations on
the boundary,using, as kernels, augmented versions of the usual singular fundamental solutions
of the biharmonic equation in an infinite plane. These augmented kernels guarantee that the
cutout boundary remains traction free for all time. Thus, the effect of the cutout on the stress
field is incorporated into the kernels and discrete modelling of the cutout boundary is not
necessary. This approach leads to an accurate determination of stresses, especially in the near
field of the cutout.

The problem of inelastic deformation of plates with cracks is of considerable importance.
Riedel and Rice[2, 3], for example, have recently studied the stress fields in cracked bodies
undergoing elastic-viscoplastic deformation. In this paper, a crack is modelled as a very thin
ellipse. It is well known that the presence of thin elliptical cutouts in plates causes very large
concentrations of stresses on and near certain points on the cutout boundary and accurate
determination of these stresses is one of the primary concerns in fracture mechanics. In
problems of inelastic fracture mechanics, where nonelastic strain rates are typically propor­
tional to high powers of stress, these regions of strain rate concentration provide nearly all the
inelastic contribution to stress rates. Thus, it is imperative that stresses in the near field of the
cracks be obtained very accurately if the redistribution of stresses with time is to be determined
with sufficient accuracy.

An earlier direct boundary element formUlation presented by the authors[4] uses Kelvin
kernels for concentrated forces in an infinite plane. That formulation requires discrete model·
ling of the cutout boundary and a very large number of boundary elements are usually needed
near crack tips in order to obtain the stresses accurately in these regions. This situation may
cause numerical problems. In the present approach, as stated earlier, the crack boundary need
not be modelled in the numerical calculations and an accurate and efficient determination of
stresses near the crack is possible.

In this paper, a restatement of the integral equation formulation[l] is followed by the
derivation of the modified kernels for plates with elliptical cutouts. Anumerical implementation
of the integral equations using a piecewise linear description of the unknown concentrations on
the physical boundary of the body is given next. Finally, numerical results for mode I and mode
II cracks in finite square plates are presented. The time·dependent redistribution of stresses in
the near field of the cracks is studied in some detail. The constitutive models used in the
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numerical calculations are power law creep [5] and the combined creep-plasticity constitutive
model of Hart [6, 7]. Numerical results using other constitutive models having the mathematical
structure of these equations, can be easily obtained if desired.

BOUNDARY ELEMENT FORMULATION

Governing differential equation
The governing biharmonic equation for the rate of the stress function 4>, for inelastic

deformation of a planar body, can be obtained as[l]

(1)

where, for plane strain

with E the Young's modulus, II the Poisson's ratio, E7j the nonelastic strain rates, V the gradient
operator and Xj a set of orthogonal cartesian axes with XI and X2 in the plane of the body.

The equation has the same form for plane stress with II set equal to zero.

Integral equations
An integral formulation for the stress rates Uij(i, j = 1,2) has the form (see Fig. 4 of [1])

81rUij(P) = i. HW(p, Q)C1( Q) dCQ + i. H~f)(p, Q)C2( Q) dCQ
hB2 JilB2

+i. H~])(p, Q)V,,<")(Q)nt(Q) dCQ - f HIJJo(p, q)V~)(q) dAq•
h~ 1 (2)

Here p (or P) is a source point and q (and Q) is a field point, with capital letters denoting points
on the boundary of the body aB2 and lower case letters denoting points inside the body B. The
functions C1 and C2 are layers of boundary concentrations to be determined from the boundary
traction rates. The vector function I)lll), for plane strain, is

and, for, plane stress, V,(II) and D,,(II) have the same form as above with II set equal to zero. The
outward normal on aB2 has components nb leo denotes a field point, and the kernels Hltl are
derived from the functions (Mz, zo) and IMz, zo) (k = 1,2) according to the formulae

HW(z, zo) = Re [2tf>Uz, zo) - itf>'i!..z, zo) - l/JUz, zo)]

HlA)(z, zo) = Re [2tf>Uz, zo) + itf>'i!..z, zo) + l/JUz, zo)

HW(z, zo) = 1m [itf>'i!..z, zo) + l/JUz, zo)]

where a prime denotes differentiation with respect to the complex variable z, a superscribed bar
denotes a complex conjugate and Re and 1m denote, respectively, the real and imaginary parts
of the quantities within brackets.



Planar. time~dependent inelastic deformation

The traction rates T; at a point P on the boundary where it is locally smooth are
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8ri;(P) =1. HW(P, Q)nj(P)C1( Q) dCQ +1. HW(P, Q)nj(P)C2( Q) dCQ
~B2 ~B2

+1. H\JI(P, Q)~(II)(Q)nj(P)nk(Q) dCQ
~B2

- fB H\J.~(P, q)D/to(II)(q)nj(P) dAq (i, j, k =1,2) (3)

The formulae for normal and shearing stress rates at a point P on the boundary can be
derived directly from eqn (2) but the formula for the tangential stress rate uee has a residue of
4'ITC2 as p approaches P on the boundary where it is locally smooth, i.e. if

then

where p* is infinitesimally close to pt.
The functions tP" and "'" (k =I, 2) from which the kernels H\t) of eqn (2) are obtained, are

derived by using the methods of Muskhelishvili[8]. Following the methods outlined in [I], the
appropriate mapping function in this case is (see Fig. I)

1z=w(!)=-+mf
f

(4)

where m =(0 - b)/(o +b) (with (0 +b)/2 =I), in terms of the semi major and minor axes of the
ellipse. Thus, m = 0 represents a circular cutout and m = 1a line crack. This function maps the
region on and outside the ellipse in the z plane to the region on and inside an unit circle in the f
plane as shown in Fig. 1. The functions tPl and "'I, within additive functions of zo, are

tPl(Z, zo) =(z - zo) In (z - zo) - mf - mf In m- (mf - zo)[In (f - '0) + In U - to)]

1
- ~ [In (1 - e! '0) +In (1 - f/ to)]

"'I(Z, zo) = - zoln (z- zo)-f- fin m-(f-zo)[lnU- '0)+ In(f- to)]

m r+~[-1 [In (1- e!,o) +In (1- e!to)] +1- mf - mf[ln m+1+In U - '0) +In (f - to)]

[ 11]1 11]-f(mf-zo) --+- +-[In(1-e!'o)+ln(1-fjto)]-----
f - '0 f - to f f - '0 f - to

(5)

(6)

./. -!!J!J.
'1'2 - ano (7,8)

where

z ±V(z2-4m)
f= 2m

" . = zo±V(Zo2-4m) are the roots of m~2- z ~+ 1= 00.. 2m ~ o~

Z +V(z 2-4m)
' 0,1 = 0 - 20 are the roots of f2 - zof+m = 0
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Fig. I(a). Plate with elliptical cutout, z plane.

, plane

Fig. I(b). Plate with elliptical cutout. ~ plane.

NUMERICAL IMPLEMENTATION

Discretization of equations
The outer boundary of the planar body with a cutout, aB2, (see Fig. 4 of [1]) is divided into

Ns straight boundary elements using Nb (Nb = Ns>boundary nodes and the interior of the body,
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B, is divided into nl triangular internal elements. A discretized version of eqn (3) is
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81riI{PM) =L ( H~Jl(PM' Q)nj(PM )el( Q) dCQ
N, lAc;

+L ( H~jl{PM' Q)nj(PM)C2( Q) dCQ
N. lAc;

+L i HW(PM, Q)Drl(Q)nj(PM)nk(Q)dcQ
N. Ac;

-t LA; H~J.lo(PM,q)Dl:)(q)nj(PM)dAq

(i,j, k =1,2, M =1,2, ... Ns) (9)

where 'TI(PM) are the traction components at the point P which coincides with node M and ACI

and AAI are boundary and internal elements respectively. The concentrations Ct and C2 are
assumed to vary linearly over each boundary element with (generally) their values assigned at
the nodes which lie at the intersections of these elements. Possible discontinuities in C, and C2

(for example, across corners) are taken care of by placing a zero length element between two
boundary nodes and assigning difterent values of concentrations at these nodes. Also, for
boundary elements adjacent to a corner, the source points are placed slightly away from the
corner itself, in order to avoid taking a limit at a point on the boundary where it is not locally
smooth.

The nonelastic strain rates iik are interpolated linearly over each triangular internal element.
Hence, the components of »CAl are uniform within each element. Integrals of H~fl and cH~fl on
boundary elements are evaluated by Gaussian integration except analytically for singular terms,
Integrals on'internal elements are always evaluated by Gaussian integration, The integrands in
this case are never singular since the Gauss points never coincide with the source points which
lie on the vertices (nodes) of the triangles.

Substitution of the linear functional forms of Cl and C2 into eqn (9) leads to an algebraic
system of the type

{i} = {A]{x} +{d}. (10)

The coefficients of the matrix [Al contain boundary integrals of the kernels. The traction
rates are prescribed, the vector {dl contains integrals of the kernels and the nonelastic strain
rates and the vector {x} contains the unknown values of the concentrations at the boundary
nodes.

Equation (2) for stress rates at an internal point p is discretized in a similar fashion,

Solution strategy
The class of constitutive models for material behavior, admissible in this BEM formulation,

has the following mathematical structure (see [1])

• 'e + '.. 'A h ( (kl)Eli =Eli Elj, Elj:: Ii UIi' q,j

'{kl ( {tl) '.. - 0qij :: glj Ulj, q,j , Eu - ,

(ll, 12)

(13,14)

Here i1j and i1j are the elastic and nonelastic strain rates and q1fl are state variables, (As
stated earlier in [1], the thermal strain rates are set to zero for the sake of simplicity and only
uniform temperature problems are considered here.) It is important to note that the rates of the
nonelastic strain and state variables, at any time, depend only on the current values of the
stress and state variables.

The initial values of the state variables are prescribed and the initial stress field is obtained
by solving the corresponding elastic problem. The initial rates of the nonelastic strain rates and
state variables are obtained from the constitutive eqns (l2)-{14). The vector d in eqn (10) is
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calculated next, and this, together with the prescribed rates of boundary tractions, are used to
calculate the initial values of the boundary concentrations C1 and C2• These concentrations are
now used in a discretized version of eqn (2) to calculate the initial stress rates throughout the
body. These rates are used to find the values of the variables after a small time interval t:.t and
so on, and in this way the time histories of the relevant variables are obtained.

Time-integration is carried out by a step-wise procedure with automatic time-step control.
An Euler-type strategy [9] which is simple, yet very efficient, is used to obtain the numerical
results presented in the next section. A brief summary of the method in terms of a single
differential equation

dydT= F(y, t)

is presented below. The value of y(t +t:.t) in terms of y(t) is

y(t +t:.t) =y(t) +F(y, t)t:.t

and the error at this step used for automatic time-step control is defined as

e =t:.tlVFII/y(t)1

(\5)

(16)

(17)

where VF = F(y, t) - F(y, t - t:.tprevious), is the first backward difference of F. Two error
parameters e rnax and emin are initially prescribed. The algorithm proceeds as follows:

ernax < e: replace t:.t by t:.tI2; recompute e

e s ernax : accept t:.t; calculate y(t +t:.t).

The time step for the next step, t:.tnexlt is decided according as

The problem at hand, of course, involves systems of such equations for the rates of
variables at the boundary and internal nodes. In this case, the error ej for the ith variable is
defined as an L I norm of the type

t:.t~ VF.
ej = ~ y.(t)1

where the summation extends over the values of the ith variable over all nodes; and then

e= max Ie;!.

The algorithm then proceeds as described above.

NUMERICAL RESULTS AND DISCUSSION

Power law creep constitutive model
The equations for power law creep are [5]

(18)

(18)

(\9)

(20,21)
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where the stress and strain rate invariants are defined as
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with Sij the deviatoric part of the stress tensor Uij, Ee and Ue reference strain rate and reference
stress respectively and mo the index of the power law.

Hart's constitutive model
According to this model, the nonelastic strain rate is decomposed into two (time-dependent)

components

(22)

where Eij is the anelastic strain, a stored strain which reflects the magnitude and direction of
prior deformation history and Et is the completely irrecoverable and path dependent permanent
strain. The two state variables in the model are the anelastic strain and a scalar u*, called
hardness, which is similar to an isotropic strain hardening parameter. The constitutive equations
prescribe flow rules for the anelastic strain tensor and the permanent and nonelastic strain
rates. Two auxiliarytensors sij and S{I are used and their sum equals sij' Certain scalar invariants of
the relevant tensors are defined in the usual way (e.g. u G =Y[(3/2)sijsij] and these are related to
each other through the uniaxial equations

u G = .J(,EG
, E" = Eo/..uf/uO)M

E' =E*(1n (u*/uG>r I/A

E* = E~T(U*/U~)'" exp (Q/RTB) exp (-Q/RT)

u* =E'u*f(u*, uG), [(u*, uG) =(~/u*)a(uG/u*)fl/"·

(23,24)

(25)

(26)

(27,28)

Equation (23) represents a linear anelastic element, (24) a nonlinear dashpot, (25) and (26) a
"plastic" element and, finally, (27) and (28) describe strain hardening. The flow parameters are
.J(" M, ni, A, Eo (at a reference stress level uo) and Eh (at reference hardness level u~ and
reference temperature TB); fJ and 8 are strain hardening parameters, R is the gas constant and
Q the activation energy for atomic self diffusion. The material parameters, many of which are
temperature dependent, are obtained from load relaxation and constant strain rate tension
experiments. They are given in Appendix A of the EPRI report by Kumar et al.[10].

The power law creep model is an example of a "traditional" creep theory and Hart's model
is an example of a "newer" theory with state variables. This combined creep-plasticity model
due to Hart has been carefully investigated recently and close correlation between theory and
experiment has been obtained for several cases[IO]. Both these models have a mathematical
structure described by eqns (lIHI4). As stated earlier, other constitutive models having a similar
mathematical structure can also be used in numerical examples for this BEM formulation.

Material parameters
The numerical examples, described in the next section, use material parameters for stainless

at 4()()OC. The elastic constants at 4()()OC are

E =0.244 x lOS psi II =0.298.

The parameters for power law creep for 18 Cr 8Ni stainless steel, from Ref. [11] are

Ee =0.277 X 10-3 s-I Ue =0.1806 x 1<1' psi

mo=7.
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The parameters for Hart's model for 304 stainless steel from Ref. (10), are

A= 0.15 M = 7.8 m= 5

Al = 0.132 x lOS psi

Eo =1.0 at 0'0 =8631.9 psi

Eh =1.269 x 10-24 S-I at O'~ =10,000 psi and

Ts = 673°K

J3 =0.179 x 1()6 psi 8 =1.33.

The initial values of state variables for an annealed specimen are

O'*(x,O) = 17 ksi Elj(X,O) = O.

Numerical results lor plane stress
Comparison with previous calculations. A square plate with an elliptical cutout of axis ratio

4 is loaded by an uniform remote stress of 4000 psi in the direction of the minor axis (the 2
direction). Quarter symmetry is used and 12 boundary nodes are distributed uniformly on the
edges XI = I, 0S X2 S I and X2 = I, 0S XI S I of the plate. The internal element distribution for
this problem is shown in Figs. 2(a) and (b). Due to the facts that the stresses are nearly uniform
far from the ellipse and that 11'" depends on strain rate gradients, only a portion of the plate is
discretized into internal elements. It is assumed that all the nonelastic contribution to the stress
rates in eqn (2) is obtained from this discretized area. This leads to a substantial saving in cost
since fewer internal elements are necessary.

T
2l

2b.l.
D c

2l ~B

1
T
~

ll.4 1·5b 0

~...;:oo-----_::_'B
3.20

r--------.....,r---------.....,c

o.OOL.
ooA O.
-----0----1

Fig. 2(a). Internal elements for plate with elliptical cutout of axis ratio 4: I under uniaxial tension.
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Fig. 2(b). Further details of Fig. 2(a).

The redistribution of stress concentration U22/ui2 with time along the line X2 =0 is shown in
Fig. 3. The results are compared with those from Ref. [4] where a direct formulation with
Kelvin kernels was used. The results at zero time coincide within plotting accuracy and those at
100 hours agree quite well. The current results are obtained from a linear interpolation of the
nonelastic strain rates over an internal element. They are expected to be more accurate than
those from Ref. [4] where a spatially uniform description of these quantities over each internal
element was used.

Mode one crack results. A crack is modelled as a thin ellipse with axis ratio 199 (m =0.99).
The plate with the crack is loaded by a remote stress in the X2 direction increasing at a constant
rate. The region very near the tip of the major axis of the ellipse is discretized into internal
elements as shown on Figs. 4(a) and (b). Quarter symmetry is used and 12 boundary nodes are
distributed uniformly along the edges of the plate in the first quadrant.

- 0.0 He (eIOitlC)

-'- 360,000 Me:
---- 360,000 Me: (Ref. 4)

10

T
2J,

8

8 N 0 C
b
N

2b.l ~B..... 21
N

1
T

b
N

6 ~

.~ 1-4 ,-5
e
J4

:Ie
u; 2

2.01.41.2

o "--__-'-__---JL..-__-'-__--J__----'

1.0 1.6 1.8

x"o
Fig. 3. Stress redistribution along the line Xl = 0 in plate with elliptical cutout of axis ratio 4: 1. Uniaxial

tension un =4ksi. Hart's model.
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Fig. 4(a). Internal elements for tracked plate under uniaxial tension.

The decrease of stress concentration at the tip of the major axis of the ellipse as a function
of the remote stress (i.e. Ui2 x time) is shown in Figs. 5 and 6 for power law creep and Hart's
model respectively. The elastic stress concentration for an infinite plate in this case is 399. The
decrease of stress concentration with time is due to flow of the material in the high stress region
near the crack tip and consequent accomodation of stress. The constitutive models include rate
dependence and stress relaxation is less at the higher loading rate since there is less time for
plastic flow in this case. The time scales are different in the two figures because Hart's model, in
this example, describes short time transient behavior, while the power law creep equations
essentially model secondary creep.

The distribution of stresses in a small region near the crack tip, along the extension of the
major axis of the ellipse, is shown in Figs. 7 (power law) and 8 (Hart's model). The stress
plots in Fig. 8show the stress state when the remote stress reaches 222 psi. The stress component
UJl is seen to increase from zero to a substantial stress concentration within a short distance from
the crack tip, before dropping off. As mentioned before, there is more stress relaxation near the
crack tip for the lower loading rate. The situation is reversed away from the crack tip in order to
satisfy equilibrium. The growth of the viscoplastic region with time for this case, from Hart's
constitutive model, is shown in Fig. 9. The boundaries are free-hand sketches obtained from a
knowledge of internal elements that have entered the viscoplastic limit[JO]. The viscoplastic limit

~=;;~===~:JOOOI
1.9899 1.99 1.9901 1.9905

Fig. 4(b). Further details of Fig. 4(a).



Planar, time·dependent inelastic deformation 137

--- c:T~ • 244 psi/sec
----- c:T~ • 24400 psi/sec

400~--~-------,,
\
\
\,

\,
\ ,,,,

" ,,,,,
"

''''...

" "',
..................... ......"'--

c
~e 200
c
"uco
u

'"'"!
iii 100

4000

O'-- ......... --L ...J.. ---l

1000 2000 3000
CD

Remote stress, 17'22 (psi)

Fig. S. Stress concentration at crack tip as function of time. Mode one. Power law creep model.
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rag. 6. Stress concentration at crack tip as function of time. Mode one. Hart's model.
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Fig. 7. Stress redistribution along the line Xz = 0 in cracked plate. Mode one. Power law creep model.
uiz = 244 psi/sec.

is the region where the stress invariant u Q in the plastic element of Hart's model nearly equals the
hardness and therefore causes substantial generation of permanent strain (i.e. large i P, see eqn
(25». This situation is analogous to yielding in classical plasticity.

Mode two crack results. The final example is that of the same cracked plate loaded remotely
in shear with a constant stress rate Ui2' In this case the elastic solution for an infinite plate gives
zero stresses at the ends of both the major and minor axes of the ellipse and a stress
concentration of (a +b)2/ab (about 201 in this case) at a point on the ellipse very near the crack
tip. Forty boundary nodes are placed uniformly around the entire plate boundary. The stresses
in this problem satisfy mirror symmetry (i.e. Ujj(Xh X2) = Ujj(-Xh -X2» and because of this it is
sufficient to distribute internal elements only in the upper half of the plate. The internal element
distribution in the first quadrant is shown in Figs. 100a) and (b) and a similar distribution is used
in the second quadrant.

Results using Hart's model are shown in Figs. 11 and 12. The stress concentration is seen to
decrease with time due to plastic Rowand the viscoplastic region. starting at the point of stress
concentration, is seen to move out in time.

The numerical results presented in this section are stable and the calculations with the
power law creep model could be continued in time. For the Hart model, however. while the
short time results reported here are stable, numerical problems are encountered if the cal­
culations for cracked plates are continued into long times. A possible solution is the use of a
simplified version of the constitutive model. Research on these lines is currently in progress.

Program statistics
The number of time steps and computer times required on an IBM 370/168. for these

problems. are shown in Table 1. The elastic solution is seen to require the major portion of
computer time. Once the elastic solution together with the proper matrices have been obtained,
the time-dependent solution essentially requires multiplication of matrices and proceeds quite
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Fig. 8. Distn'bution of stresses along the line Xl =0 in cracked plate when 0'~1 =222 psi. Mode one. Hart's
model.

rapidly. Of course, for a liven geometry and loading, the elastic solution can be stored and
reused. Thus, for example, the elastic solution for problems 2-5 in Table 1 is calculated only
once.

CD
0"22

I 21

21 2"1-

1 lac"
~-Itt f-5O

~
1.99 l.ttOI

---,0 -I
rig. 9. Growth of viscoplastic region in cracked plate. Mode one. Hart's model. Un ~ 244 psi/sec.
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Fig. 100a). Internal elements for cracked plate in shear.
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Fig. 1O(b). Further details for Fig. 100a).

CONCLUSIONS

A boundary element formulation for time-dependent inelastic deformation of plates with
cutouts has been presented in a companion paper[1l. The formulation uses augmented kernels
which guarantee that the cutout surface is traction free for alI time. Since the effect of the
cutout on the stress field is incorporated in the kernels, the cutout boundary need not be
discretely modelled in a numerical solution scheme. Thus, this is an efficient and accurate
method for calculation of stresses, especially near the crack.

Using this formUlation, a numerical procedure for the determination of stresses in the near
field of a stationary crack in a finite plate is presented here. Acrack is modelled as a thin ellipse
of axis ratio 199. The time-dependent redistribution of stresses near a tip of the major axis of
the ellipse is calculated numerically for remote tensile (mode one) and shear (mode two)
loading. The step-wise time integration of the rate equations proceeds rapidly and time-histories
of the relevant variables is obtained within reasonable amounts of computer time. The
constitutive models to describe material behavior, used in the numerical examples, are power
law creep and the combined creep plasticity constitutive model of Hart. Other constitutive
models having the same mathematical structure of the above can be easily incorporated into the
formulation.
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Table I. Program statistics
No. of C.P.U. (..conds)

TIpe of ProU.. Ti_ Steps Elastic Inelastic Total

a/b. 4 Hart'S law
462 137.4 31.9 169.3

1. 0;2 • 4000 psi

alb • 199 Pover Law

2. 0;2 • 24400 psi/sec 900 158.6 45.3 203.9

3. 0;2 • 244 psi/sec 2100 158.6 87.4 246.0

a/b· 199 Hart's Law

4. 0;2 • 24400 psi/sec 500 158.6 41.3 199.9

5. 0;2 • 244 pai/sec 510 158.6 62.8 221.4

a/b· 199 Hart's Law

6. 0~2 • 244 pai/sec 600 393.1 176.5 569.6
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r... II. Stress concentration on crack surface near the crack tip as function of time. Mode two. Hart's
model ui2 = 244 psi/sec.
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Fig. 12. Growth of viscoplastic region in cracked plate. Mode two. Hart's model. ui2 = 244 psi/sec.

It is found that the stress concentration near the crack tip drops of( quickly due to rapid
plastic flow in this region. The stress relaxation is less at a rapid loading rate, compared to a
slower loading rate, because there is less time for plastic flow in the former case. Aviscoplastic
region, starting at the point of stress concentration, is seen to move out in time.
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